EPSRC logo

Details of Grant 

EPSRC Reference: EP/S013776/1
Title: Giant magneto-optic response in rare-earth doped glasses and manufacturing of related devices and sensors
Principal Investigator: Brambilla, Professor G
Other Investigators:
Sahu, Professor J
Researcher Co-Investigators:
Project Partners:
Defence Science & Tech Lab DSTL Fibercore Ltd SPI Lasers UK Ltd
Department: Optoelectronics Research Centre
Organisation: University of Southampton
Scheme: Standard Research
Starts: 01 November 2018 Ends: 31 October 2021 Value (£): 806,862
EPSRC Research Topic Classifications:
Materials Characterisation Materials Synthesis & Growth
Optical Devices & Subsystems
EPSRC Industrial Sector Classifications:
Communications
Related Grants:
Panel History:
Panel DatePanel NameOutcome
04 Sep 2018 EPSRC ICT Prioritisation Panel September 2018 Announced
Summary on Grant Application Form
The magneto-optic effect is the core part of optical isolators and widely used in optical sensors. The market of optical isolators was estimated to be $0.7B in 2016 and is expected to grow at 5% per annum while that of optical fibre sensors has grown continuously in the last two decades and from $3.38B in 2016 it is expected to reach $5.98B in 2026.

To date fiberized devices and sensors based on the magneto optic effect have relied on simple telecom fibres or hybrid solutions with expensive crystals. This project proposes new manufacturing technologies for high performance optical isolators and current/magnetic field sensors aimed to replace the traditional hybrid approach based on crystals with novel glasses/fibres.

This approach relies on our recent discovery that slightly-doped Gd-doped glass fibres exhibit a giant magneto-optic coefficient, similar to crystals, yet maintaining low-cost, low loss and high compatibility with fibres. This proposed programme spans from the investigation of giant magneto-optic effect in slightly doped glasses to the manufacture of specialty silica fibres, through the design of fiberized isolators and novel fibre based frequency conversion devices, and their combination in suitable systems for applications in security, industry and medicine.

Although the initial effort will relate to the fabrication and characterization of novel glass compositions for glasses and fibres with giant magneto-optic response, the newly developed fibres will then be used to manufacture novel sensors and devices for selected practical industrial implementations in optical isolators and magnetic/current sensing.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.soton.ac.uk