EPSRC logo

Details of Grant 

EPSRC Reference: EP/S013555/1
Title: The Flexible Wing Project: Wing-box static test validation.
Principal Investigator: York, Dr CB
Other Investigators:
Researcher Co-Investigators:
Project Partners:
University of Sao Paolo
Department: School of Engineering
Organisation: University of Glasgow
Scheme: Overseas Travel Grants (OTGS)
Starts: 10 July 2018 Ends: 09 November 2018 Value (£): 31,710
EPSRC Research Topic Classifications:
Materials testing & eng.
EPSRC Industrial Sector Classifications:
Aerospace, Defence and Marine
Related Grants:
Panel History:  
Summary on Grant Application Form
Manufacturers are beginning to consider the possibilities of moving away from traditional composite material designs but need further evidence that aero-elastically tailored composite materials can: produce weight savings; introduce aerodynamic efficiency and reduce manufacturing time without incurring cost penalties.

The research will be undertaken in collaboration with the University of São Paulo, and with continued involvement from a number of industrial partners who have supplied composite materials and moulds for specimen manufacture, including a leading Brazilian airframe manufacturer with whom a research article is planned, describing the development of an aero-elastically tailored wing. These collaborations were established during a preliminary study under the Newton Research Collaboration Programme (NRCP1516/4/50) - The Flexible Wing Project: Advanced Tailoring Strategies for Laminated Composite Materials. A key aspect of the preliminary study involved the development of a special class of laminate, possessing Extension-Shearing Bending-Twisting coupling, necessary for optimised passive-adaptive flexible wing-box structures.

The possibility of achieving a measurable drag reduction in cruise flight, without the cost or reliability issues associated with active control mechanisms, is of significant interest for achieving increased fuel burn efficiency, and for meeting future emissions targets. The introduction of passive Bending-Twisting coupling at the wing-box level has been demonstrated through laminate level tailoring of Extension-Shearing coupled skins, and new results have revealed a vast laminate design space with Extension-Shearing that can be maximised without the unfavourable strength reduction associated with off-axis alignment of the principal fibre reinforcement, which prior to this research was the only know technique for introducing the required mechanical coupling behaviour.

The second stage of the Flexible Wing Project, and the subjec of the current proposal, is a due diligence study, to ensure that the strength requirements for safe operation during wind tunnel testing are achieved.

Simulations will be performed to assess the effect of imposing standard manufacturing constraints, such as ply percentages, ply contiguity and ply orientations on the laminate skin panels, as well as unconventional laminate designs, which will possess extension-shearing coupling. However, the associated manufacturing uncertainties are difficult to capture through simulation alone, hence static tests will also be performed to demonstrate that stiffness and strength characteristics are met prior to wind-tunnel testing. The second stage of the Flexible wing project therefore involves the design, manufacture and test of a technology demonstrator, which will be flown in a wind tunnel in a third and final stage of the Flexible Wing Project.



Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.gla.ac.uk