EPSRC logo

Details of Grant 

EPSRC Reference: EP/S005056/1
Title: COMMOTIONS: Computational Models of Traffic Interactions for Testing of Automated Vehicles
Principal Investigator: Markkula, Dr G
Other Investigators:
Leonetti, Dr M Billington, Dr J
Researcher Co-Investigators:
Project Partners:
Aimsun Five AI Limited
Department: Institute for Transport Studies
Organisation: University of Leeds
Scheme: EPSRC Fellowship
Starts: 01 January 2019 Ends: 30 June 2023 Value (£): 1,170,743
EPSRC Research Topic Classifications:
Design Engineering Human-Computer Interactions
EPSRC Industrial Sector Classifications:
Related Grants:
Panel History:
Panel DatePanel NameOutcome
04 Jul 2018 EPSRC ICT Prioritisation Panel July 2018 Announced
04 Sep 2018 ICT and DE Fellowship Interviews 5 and 6 September 2018 Announced
Summary on Grant Application Form
As automated vehicles (AVs) are being developed for driving in increasingly complex and diverse traffic environments, it becomes increasingly difficult to comprehensively test that the AVs always behave in ways that are safe and acceptable to human road users. There is wide consensus that a key part of the solution to this problem will be the use of virtual traffic simulations, where simulated versions of an AV under development can meet simulated surrounding traffic. Such simulations could in theory cover vast ranges of possible scenarios, including both routine and more safety-critical interactions. However, the current understanding and models of human road user behaviour is not good enough to permit realistic simulations of traffic interactions at the level of detail needed for such testing to be meaningful. This fellowship aims to develop the missing simulation models of human behaviour, to ensure that development of the future automated transport system can be carried out in a responsible, human-centric way.

Behaviour of car drivers and pedestrians will be observed both in real traffic as well as in controlled studies in driving and pedestrian simulators, in some cases complementing behavioural data with neurophysiological (EEG) data, since several candidate component models make specific predictions about brain activity. The fellowship will then build on existing models of driver and pedestrian behaviour in routine and safety-critical situations, and extend these with state of the art neuroscientific models of specific phenomena like perceptual judgments, beliefs about others' intentions, and communication, to create an integrated cognitive modelling framework allowing simulations of traffic interactions across a variety of targeted scenarios.

Such cognitive interaction models, based on well-understood underlying mechanisms, will be one main contribution from the fellowship. Some researchers have suggested the use of another type of model altogether, instead obtained directly by applying machine learning (ML) methods to large data sets of human road user behaviour, i.e., without an ambition to correctly model underlying mechanisms. This fellowship hypothesises that to achieve reliable virtual testing of AVs, both types of modelling approaches will be needed, and methods for combining them will be researched. Not least, due to their "black box" nature, ML models need to be investigated and benchmarked, to for example determine their ability to generalise to rare, safety-critical events.

The multi-disciplinary research, building on and extending on the fellow's past experience in vehicle engineering, cognitive neuroscience, and machine learning, will be carried out at the Institute for Transport Studies, University of Leeds, with support also from the Schools of Psychology and Computing. The fellowship has direct support from industry, both in advisory capacities and as project partners actively sharing data and methods as well as providing first proof-of-concept uptake of the developed models into industrial environments for simulated testing.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.leeds.ac.uk