EPSRC logo

Details of Grant 

EPSRC Reference: EP/R035482/1
Title: Optical Clock Arrays for Quantum Metrology
Principal Investigator: Jones, Dr MPA
Other Investigators:
Adams, Professor CS
Researcher Co-Investigators:
Project Partners:
Department: Physics
Organisation: Durham, University of
Scheme: Standard Research
Starts: 01 May 2018 Ends: 30 April 2022 Value (£): 1,012,413
EPSRC Research Topic Classifications:
Light-Matter Interactions Quantum Optics & Information
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
07 Mar 2018 EPSRC Physical Sciences - March 2018 Announced
Summary on Grant Application Form
Many aspects of the modern world are underpinned by precise timing and synchronisation, from financial trading and power grids, to satellite navigation. This precise timing is provided by atomic clocks which are currently based on microwave transitions in atoms like caesium. However, atomic clock research is currently undergoing a revolution, as clocks switch from microwave transitions to optical transitions, which has enabled the performance of state-of-the-art clocks to improve by a factor of over one hundred in just ten years.

Ultimately the performance of these clocks will be limited by statistics - the accuracy of measurements is determined by the number of independent trials (much like measuring the probability that a coin is fair by tossing it many times). In practice, the maximum number of atoms that can be used in such a clock is limited. However it has been known for over thirty years that this limit can be broken using a quantum property known as entanglement, where the atoms in the clock are correlated rather than independent.

The big challenge that we address in this proposal is to create the right kind of entanglement in an optical atomic clock for the first time. To do this we will build a new type of optical atomic clock where each atom can be controlled independently. To correlate the atoms, we will exploit state-of-the-art methods based on exciting the atoms to high-energy states known as Rydberg states.

The breakthrough that we target is the first proof-of-principle demonstration of an entanglement-enhanced measurements in an optical atomic clock.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: