EPSRC Reference: 
EP/R021422/1 
Title: 
Quantitative arithmetic geometry 
Principal Investigator: 
Loughran, Dr DT 
Other Investigators: 

Researcher CoInvestigators: 

Project Partners: 

Department: 
Mathematics 
Organisation: 
University of Manchester, The 
Scheme: 
First Grant  Revised 2009 
Starts: 
01 April 2018 
Ends: 
31 March 2020 
Value (£): 
98,480

EPSRC Research Topic Classifications: 

EPSRC Industrial Sector Classifications: 
No relevance to Underpinning Sectors 


Related Grants: 

Panel History: 

Summary on Grant Application Form 
A Diophantine equation is a polynomial equation where one is interested in finding solutions in the whole numbers. Mathematicians have been fascinated by such equations since antiquity. Often simple to state problems require very difficult tools to solve (one of the most famous examples of this being Andrew Wiles's celebrated proof of Fermat's last theorem). Moreover such equations, whilst originally viewed as nothing but a curiosity, have found important applications in modern times to information security and cryptography.
Given a Diophantine equation, a fundamental problem is to determine whether a solution actually exists. This problem in itself is very difficult. Things get even more interesting if one has a *family* of Diophantine equations (given by varying the coefficients of the equations, say). In this case one would like to understand the distribution of equations in the family with a solution. This is a very popular modern topic, with Manjul Bhargava being awarded the Fields Medal in 2014 for his work on such problems (this is a kind of mathematician's version of the Nobel prize).
The project concerns problems of this type. Here there is a conjecture due to JeanPierre Serre, a famous French mathematician, on the distribution of Diophantine equations in certain families with a solution (namely plane conics). We will answer some cases of Serre's problem, as well as extending Serre's original framework to more general problems.
A famous theorem of Erdos and Kac also states that a "random" integer n has approximately log log n prime factors (in a precise probabilistic sense). We will obtain analogues of this probabilistic result in the setting of families of Diophantine equations, where we ask for the number of primes p for which a given equation is not soluble modulo p.

Key Findings 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Potential use in nonacademic contexts 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Impacts 
Description 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk 
Summary 

Date Materialised 


Sectors submitted by the Researcher 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Project URL: 

Further Information: 

Organisation Website: 
http://www.man.ac.uk 