EPSRC logo

Details of Grant 

EPSRC Reference: EP/R004366/1
Title: Realibility, Condition Monitoring and Health Management Technologies for WBG Power Modules
Principal Investigator: Alatise, Dr O
Other Investigators:
dahidah, Dr m s Johnson, Professor CM Stark, Dr BH
Mellor, Professor PH Pickert, Professor V Ran, Professor L
Researcher Co-Investigators:
Dr PA Agyakwa Mr JA Ortiz Gonzalez Dr J Wang
Project Partners:
Amantys Ltd Offshore Renewable Energy Catapult Sevcon Ltd
Turbopowersystems
Department: Sch of Engineering
Organisation: University of Warwick
Scheme: Standard Research
Starts: 01 October 2017 Ends: 30 September 2020 Value (£): 1,218,122
EPSRC Research Topic Classifications:
Electronic Devices & Subsys.
EPSRC Industrial Sector Classifications:
Electronics Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
25 Apr 2017 Power Electronics 2016-17 Interviews Announced
Summary on Grant Application Form
This project proposes a paradigm shift in the operational management and use of power converters that entails active reliability management. This involves predicting failure and managing the remaining useable life of the power converter. Power electronic converters are indispensable to modern civilisation. They are responsible for electrical power conversion for a range of applications that span the few watts for portable hand-held electronics to several gigawatts for entire electrical power networks. Over the past few decades, the need for industrial decarbonisation has intensified the research into more efficient and reliable power electronic devices, components and converters. This is because power electronic converters are required for integrating renewable energy sources (solar, wind, tidal etc.) into the electrical system. Furthermore, electric transportation, which is seen as critical for reducing green-house emissions, relies very heavily on power electronics. Hybrid and full electric vehicles require power converters to control the traction machine, likewise, electric trains require power converters. Marine propulsion has also adopted the electric paradigm with the gas driven turbine replaced by a converter driven electrical motor. However, as power converters are driven at increasingly higher power densities, several reliability concerns have been recognised. The power converters are comprised of power modules, which in turn are comprised of switching power semiconductor devices in an electrically isolating but thermally conducting package. The reliability of the power semiconductor device and its mechanical interconnects has been intensely investigated by industrial and academic researchers over the last decade. Silicon devices have been the principal technology in power electronics for the last few decades however, silicon carbide and gallium nitride devices have emerged as viable alternatives. These new devices are referred to as wide bandgap devices because they have energy bandgaps larger than that of silicon. The simply means that they can withstand more energy thereby increasing the efficiency of power conversion. The reliability of these WBG semiconductors is increasingly becoming a very important topic since these new devices are gaining increasing market penetration. In applications with high failure costs, for example, automotive traction, aerospace and grid connected converters, the uptake of new technology is slow. By developing technologies that can improve the reliability of these new devices and monitor their health on-line, the uptake of new WBG power modules is very significantly de-risked. This project aims to do just this, by providing a condition monitoring and health management platform for WBG based power electronic modules.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.warwick.ac.uk