EPSRC logo

Details of Grant 

EPSRC Reference: EP/P02064X/1
Title: Understanding and modelling kinetic turbulence in magnetized plasmas
Principal Investigator: Teaca, Dr B
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Ctr for Flow Measure & Fluid Mechanics
Organisation: Coventry University
Scheme: First Grant - Revised 2009
Starts: 01 June 2017 Ends: 31 May 2019 Value (£): 90,298
EPSRC Research Topic Classifications:
Fusion
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
24 Jan 2017 EPSRC Physical Sciences - January 2017 Announced
Summary on Grant Application Form
Plasma physics is at the core of the UK Magnetic Fusion Research Program, an important pillar of the EPSRC's Energy theme. The generation of electrical power via magnetic confinement fusion represents a promising endeavour: aiming to provide an abundant, inexpensive, clean, safe and reliable source of energy that can support a thriving economy, while at the same time offering a viable alternative to fossil fuels as a way to tackle global environmental challenges. Magnetic confinement fusion makes use of strong magnetic fields to confine the fusion plasma fuel in a series of nested torus shaped magnetic surfaces, in a device known as a tokamak. Turbulence in plasma represents a key impediment to this objective, as turbulent mixing is known to enhance the transport of particles and heat across magnetic surfaces, leading to the eventual loss of plasma confinement that stops the fusion reaction.

Understanding the proper interactions in plasma turbulence, interactions that occur at physical scales captured only by kinetic theories in a six dimensional phase space, allows for correct implementation of turbulence models. These models can be employed for tokamak transport studies, which in turn can determine the most efficient operational regime of current machines and directly impact the design of future tokamak reactors.

As plasma turbulence at kinetic levels is poorly understood to this day, while adequate kinetic turbulence models are yet to be developed, we turn towards space plasma configurations to offer simpler environments for isolating fundamental turbulence dynamics. This project will tackle plasma turbulence from a kinetic perspective, addressing fundamental questions pursued in the solar wind academic community, such as the identification of the dynamical route used for the dissipation of small scale turbulence energy and, at the same time, develop practical solutions in the form of new knowledge-based turbulence modes that will directly aid fusion research (a promising long term industrial goal).

The work will unite collaborators from national (Culham Centre for Fusion Energy) and international (Max-Planck Institute for Plasma Physics, Germany and University of California, Los Angeles, US) institutions, while being led by a researcher based at Coventry University.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.cov.ac.uk