EPSRC logo

Details of Grant 

EPSRC Reference: EP/P006183/1
Title: Surface Nanoscale Axial Photonics (SNAP)
Principal Investigator: Sumetsky, Professor M
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Arden Photonics IBM National Physical Laboratory
Xtera Communications Limited
Department: Sch of Engineering and Applied Science
Organisation: Aston University
Scheme: Standard Research
Starts: 01 May 2017 Ends: 30 April 2021 Value (£): 916,352
EPSRC Research Topic Classifications:
Optical Devices & Subsystems Optoelect. Devices & Circuits
EPSRC Industrial Sector Classifications:
Communications Electronics
Information Technologies
Related Grants:
Panel History:
Panel DatePanel NameOutcome
20 Oct 2016 EPSRC ICT Prioritisation Panel Oct 2016 Announced
09 Sep 2016 EPSRC ICT Prioritisation Panel Sep 2016 Deferred
Summary on Grant Application Form
Over the last decade, much interest of scientists and engineers working in optics and photonics has been attracted to the research and development of miniature devices based on the phenomenon of slow light. The idea of slow light consists in reducing its average speed of propagation by forcing light to oscillate and circulate in specially engineered microscopic photonic structures (e.g., photonic crystals and coupled ring resonators). Researchers anticipated that slow light devices will have revolutionary applications in communications, optical and radio signal processing, quantum computing, sensing, and fundamental science. For this reason, the research on slow light has been conducted in many academic laboratories and industrial research centres including telecommunications giants IBM, Intel, and NTT. However, in spite of significant progress, it had been determined that current photonic fabrication technologies are unable to produce practical slow light devices due to the major barriers: the insufficient fabrication precision and substantial attenuation of light.

To overcome these barriers, this project will develop a new photonic technology, Surface Nanoscale Axial Photonics (SNAP) which will allow us to demonstrate miniature photonics devices with unprecedentedly high precision and low loss.

SNAP is a new microphotonics fabrication platform invented by the PI of this project. In contrast to previously considered slow light structures based on circulation of light in coupled ring resonators and oscillations photonic crystals, the SNAP platform employs whispering gallery modes of light in an optical fibre, which circulate near the fibre surface and slowly propagate along its axis. The speed of axial propagation of these modes is so slow that it can be fully controlled by dramatically small nanoscale variations of the fibre radius.

This project will develop the advanced SNAP technology for fabrication of ultraprecise, ultralow loss, tuneable, switchable and fully reconfigurable miniature slow light devices establishing the groundwork for their revolutionary applications in future Information and Communication Technologies. The success of the project will place the UK in the centre of this revolutionary development.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.aston.ac.uk