EPSRC logo

Details of Grant 

EPSRC Reference: EP/N025393/1
Title: High Frequency Flexural Ultrasonic Transducers (HiFFUT) - a new class of transducer
Principal Investigator: Dixon, Professor SM
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Cygnus Ltd Detectronic Dynoptic
EES Research Flexim Instruments UK Ltd GE (General Electric Company)
Katronic Systems Ltd Micronics National Nuclear Laboratory
Department: Physics
Organisation: University of Warwick
Scheme: EPSRC Fellowship
Starts: 01 July 2016 Ends: 30 June 2021 Value (£): 1,194,109
EPSRC Research Topic Classifications:
Control Engineering Instrumentation Eng. & Dev.
Materials testing & eng.
EPSRC Industrial Sector Classifications:
Water Energy
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
25 Feb 2016 Engineering Fellowship Interview Panel A February 2016 Announced
09 Feb 2016 Engineering Prioritisation Panel Meeting 9 and 10 February 2016 Announced
Summary on Grant Application Form
Flexural transducer currently are only designed for operation in ambient atmospheric conditions, at frequencies of up to approximately 50 kHz, with a long wavelengths in fluids and therefore reduced measurement resolution in many cases. If we could find a way to increase the frequency range of operation of these devices, whilst at the same time creating new designs that could withstand high pressures and temperatures, a plethora of new applications will open up, in some cases enabling measurements to be made that could not otherwise be taken - that is what this project will do, establishing a world lead in this field of research of High Frequency Flexural Transducers. Techniques will be created that used the HiFFUTs for the non-destructive testing of low acoustic impedance materials such as aerospace composites, flow measurements and metrology in hostile environments.

Flexural ultrasonic transducers (sometimes referred to as uni-morphs) operate through the action of the bending / flexing of a piezoelectric material that is attached to a passive material. This is exactly how an ultrasonic car parking sensor operates, and these devices operating at twice the maximum audible frequency of humans, of around 40kHz, have had a tremendous impact, particularly on the automotive sector. The key to the success of flexural transducers used in parking sensors lies in the fact that they are extremely sensitive and efficient, whilst at the same time they are relatively simple to construct and are extremely robust. Imagine the typical environment that these sensors have to survive in; high vibration, large fluctuations in operating temperature, corrosive, dirty and wet conditions - whilst operating at a low power with a high sensitivity. So what makes these flexural transducers attractive to the automotive sector, where there is high pressure to keep sensor costs low at the same time as the sensors being very reliable? The two key factors are that (1) the piezoelectric element is bonded to the inside of a metal cap and the rear of the cap is hermetically sealed, and (2) the flexing of the metal cap and thin piezoelectric element, either from piezoelectric excitation or the arrival of a pressure wave requires relatively little energy. There is currently a surprising lack of any published, rigorous scientific study on these types of small flexural transducers, even at low frequencies and nothing appears to have been attempted using these types of transducers in liquids or for non-destructive evaluation.

The vibration characteristics of a HiFFUT are dependent on the combined response and interaction of all the sensor's components with the medium it operates within or upon. Usually the mechanical response of these transducers is dominated by the vibration behaviour of the passive flexing membrane of the transducer housing to which the piezoelectric is attached, rather than the thickness or diameter of the piezoelectric element bonded to the housing. There are related examples of MEMs based transducers that operate by a flexural membrane at higher frequencies such as Capacitive Micro-machined Ultrasonic Transducers and Piezoelectric Micro-machined Ultrasonic Transducers and whilst these are clearly elegant devices, there are clearly a number of significant advantages to the use of HiFFUTs in many industrial applications.

The most useful modes of operation are probably the axisymmetric modes, which will generate axisymmetric wave fields and work will mainly focus on these, but there may be instances where an anisotropic wave field provides an advantage. Flexural transducers or HiFFUTs can also be driven at a number of axisymmetric harmonic modes or frequencies - using one transducer to cover a wide bandwidth, with each mode having a different directivity pattern will dramatically increase the depth and breadth of information that can be obtained. These transducers are going to find applications in a wide range of industrial application
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.warwick.ac.uk