EPSRC logo

Details of Grant 

EPSRC Reference: EP/N008847/1
Title: A Zonal CFD Approach for Fully Nonlinear Simulations of Two Vessels in Launch and Recovery Operations
Principal Investigator: Greaves, Professor D
Other Investigators:
Hann, Dr M R Iglesias, Professor G
Researcher Co-Investigators:
Project Partners:
BAE Systems ESI Royal National Lifeboat Institution
Systems Engineering and Assessment Ltd. Zenotech Ltd
Department: Sch of Engineering
Organisation: University of Plymouth
Scheme: Standard Research
Starts: 01 October 2015 Ends: 31 January 2019 Value (£): 446,013
EPSRC Research Topic Classifications:
Fluid Dynamics
EPSRC Industrial Sector Classifications:
Aerospace, Defence and Marine
Related Grants:
EP/N008839/1 EP/N008863/1
Panel History:
Panel DatePanel NameOutcome
18 Jun 2015 Engineering Prioritisation Panel Meeting 18 June 2015 Announced
Summary on Grant Application Form
Launch and recovery of small vehicles from a large vessel is a common operation in maritime sectors, such as launching and recovering unmanned underwater vehicles from a patrol of research vessel or launching and recovering lifeboats from offshore platforms or ships. Such operations are often performed in harsh sea conditions. The recent User Inspired Academic Challenge Workshop on Maritime Launch and Recovery, held in July 2014 and coordinated by BAE systems, identified various challenges associated with safe launch and recovery of off-board, surface and sub-surface assets from vessels while underway in severe sea conditions. One of them is the lack of an accurate and efficient modelling tool for predicting the hydrodynamic loads on and the motion of two floating bodies, such as vessels of different size which may be coupled by a non-rigid link, in close proximity in harsh seas. Such a tool may be employed to minimise the risk of collisions and unacceptable motions, and to facilitate early testing of new concepts and systems. It may also be used to estimate hydrodynamic loads during the deployment of a smaller vessel (for example, a lifeboat) and during recovery of a smaller vessel from the deck of a larger vessel. The difficulties associated with development of such tools lie in the following aspects: (1) the water waves in harsh sea states have to be simulated; (2) the motion of the small vehicle and change in its wetted surface during launch or recovery can be very large, possibly moving from totally dry in air to becoming entirely submerged; (3) the viscous effects may play an important role and cannot be ignored, and will affect the coupling between ocean waves and motion of the vehicles. Existing methods and tools available to the industry cannot deal with all of these issues together and typically require very high computational resources.

This project will develop an accurate and efficient numerical model that can be applied routinely for the analysis of the motion and loadings of two bodies in close proximity with or without physical connection in high sea-states, which of course can be employed to analyse the launch and recovery process of a small vehicle from a large vessel and to calculate the hydrodynamics during the process. This will be achieved building upon the recent developed numerical methods and computer codes by the project partners and also the success of the past and ongoing collaborative work between them. In addition, the project will involve several industrial partners to ensure the delivery of the project and to promote impact.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.plym.ac.uk