EPSRC logo

Details of Grant 

EPSRC Reference: EP/K035606/1
Title: Oxford University Centre for Doctoral Training in Cyber Security
Principal Investigator: Martin, Professor A
Other Investigators:
Brown, Professor I Goldsmith, Professor M
Researcher Co-Investigators:
Project Partners:
Barclays Bank Plc Citrix Systems Hewlett Packard
IBM Intel Corporation Ltd Lockheed Martin
Malvern Cyber Security Cluster Microsoft Nokia
Sophos plc Thales Ltd
Department: Computer Science
Organisation: University of Oxford
Scheme: CDT - NR1
Starts: 01 April 2013 Ends: 31 December 2019 Value (£): 3,662,582
EPSRC Research Topic Classifications:
Computer Sys. & Architecture Fundamentals of Computing
Information & Knowledge Mgmt Modelling & simul. of IT sys.
Networks & Distributed Systems Software Engineering
EPSRC Industrial Sector Classifications:
Aerospace, Defence and Marine Communications
Information Technologies
Related Grants:
Panel History:
Panel DatePanel NameOutcome
31 Jan 2013 EPSRC CDTs in Cyber Security Announced
Summary on Grant Application Form
The great majority of the CDT's research will fit into the four themes listed below, whether focussed upon application domains or on underpinning research challenges. These represent both notable application areas and emerging cyber security goals, and taken together cover some of the most pressing cyber security challenges our society faces today.

1. Security of 'Big Data' covers the acquisition, management, and exploitation of data in a wide variety of contexts. Security and privacy concerns often arise here - and may conflict with each other - together with issues for public policy and economic concerns. Not only must emerging security challenges be ad-dressed, new potential attack vectors arising from the volume and form of the data, such as enhanced risks of de-anonymisation, must be anticipated - having regard to major technical and design challenges. A major application area for this research is in medical re-search, as the formerly expected boundaries between public data, research, and clinical contexts crumble: in the handling of genomic data, autonomous data collection, and the co-management of personal health data.

2. Cyber-Physical Security considers the integration and interaction of digital and physical environments, and their emergent security properties; particularly relating to sensors, mobile devices, the internet of things, and smart power grids. In this way, we augment conventional security with physical information such as location and time, enabling novel security models. Applications arise in critical infrastructure monitoring, transportation, and assisted living.

3. Effective Systems Verification and Assurance. At its heart, this theme draws on Oxford's longstanding strength in formal methods for modelling and abstraction applied to hardware and software verification, proof of security, and protocol verification. It must al-so address issues in procurement and supply chain management, as well as criminology and malware analysis, high-assurance systems, and systems architectures.

4. Real-Time Security arises in both user-facing and network-facing tools. Continuous authentication, based on user behaviour, can be less intrusive and more effective than commonplace one-time authentication methods. Evolving access control allows decisions to be made based on past behaviour instead of a static policy. Effective use of visual analytics and machine learning can enhance these approaches, and apply to network security management, anomaly detection, and dynamic reconfiguration. These pieces con-tribute in various ways to an integrated goal of situational awareness.

These themes link to many existing research strengths of the University, and extend their horizon into areas where technology is rapidly emerging and raising pressing cyber security concerns. The proposal has strong support from a broad sweep of relevant industry sectors, evidenced by letters of support attached from HP Labs, Sophos, Nokia, Barclays, Citrix, Intel, IBM, Microsoft UK, Lockheed Martin, Thales, and the Malvern Cyber Security Cluster of SMEs.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.ox.ac.uk