EPSRC logo

Details of Grant 

EPSRC Reference: EP/K019759/1
Title: Energy efficient lower limb prostheses
Principal Investigator: Howard, Professor D
Other Investigators:
Kenney, Dr LPJ Twiste, Dr M Ren, Dr L
Baker, Professor R
Researcher Co-investigators:
Project Partners:
Chas A Blatchford & Sons Ltd Uni Hospital of South Manchester NHS
Department: Sch of Computing, Science & Engineering
Organisation: University of Salford
Scheme: Standard Research
Starts: 02 September 2013 Ends: 31 December 2016 Value (£): 671,817
EPSRC Research Topic Classifications:
Biomechanics & Rehabilitation
EPSRC Industrial Sector Classifications:
Related Grants:
Panel History:
Panel DatePanel NameOutcome
27 Nov 2012 EPSRC Engineering Research Challenges in Healthcare Call Announced
Summary on Grant Application Form

Unilateral trans-femoral amputee gait consumes up to 60% more energy than able-bodied gait. For higher level amputees, research suggests that energy efficiency drops by well over 80%. Recently it has been shown that energy consumption in high level amputees increases significantly when walking on slopes, suggesting studies in level walking may underestimate the extent of the problem. The negative effects of high energy consumption are compounded by reductions in walking speed of typically 40% for trans-femoral amputees with associated low activity levels, particularly in elderly amputees. These deficits are even greater in bilateral amputees. This has a tremendous impact on what amputees can achieve and the consequences for their quality of life.

The energy storage and return capabilities of prostheses are crucial to improving the situation and yet modern prostheses only store and return significant energy below the knee, and energy is not returned in a controlled manner. For example, stored energy is not available for plantar-flexion (push-off) at the end of stance. Furthermore, modern prosthetic systems don't transfer energy between joints, which is a lost opportunity as, for example, the excess of eccentric work at the knee could be stored and used in a controlled manner at other joints. For these reasons, we believe there is an opportunity for truly transformative research leading to a step change in the performance of lower limb prostheses.

We have been undertaking simulation studies to establish the potential for hydraulic technology to enable controlled storage, transfer between joints, and return of energy in lower limb prostheses. This work is showing great promise and we have held back from publishing our results because of the possibility of protecting the intellectual property rights. Although the work to date has focussed on prostheses for trans-tibial amputees, this approach has even greater potential for improving the energy efficiency of trans-femoral amputee gait. Therefore, in this project, we will explore storage, transfer between joints, and return of energy involving ankle, knee and hip; the latter being to evaluate the potential for amputees to benefit from some additional energy storage and return via a hip orthosis.

We are focussing on hydraulic designs because of their unique advantages for the prosthetics application. Because they typically operate at pressures of 200 to 400 bar, hydraulic systems have very high power densities and are therefore well suited to miniaturisation, an important requirement in prosthetics. Short term energy storage is another important requirement for which hydraulic accumulators are well suited. Finally, hydraulic actuation is ideally suited for transferring energy between joints because the transfer mechanism involves only pipes and fluid, rather than gears and linkages. This is of particular importance for higher level amputees who could benefit if the excess of eccentric work at the knee could be stored and used in a controlled manner at other joints.

To achieve our objectives we will build on our research in three areas, which correspond to the three main work packages (WPs). WP1 will develop and simulate alternative concept designs. WP2 will establish a methodology for predicting the ways in which amputees might adapt their gait to alternative prosthesis. WP3 will provide gait laboratory data for: validating the gait prediction methodology; and informing the concept designs.

Key Findings
No information has been submitted for this grant.
Potential use in non-academic contexts
No information has been submitted for this grant.
No information has been submitted for this grant.
Sectors submitted by the Researcher
No information has been submitted for this grant.
Project URL:  
Further Information:  
Organisation Website: http://www.salford.ac.uk